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Machine learning algorithms such as neural networks are more useful, when their predictions can be
explained, e.g. in terms of input variables. Often simpler models are more interpretable than more complex
models with higher performance. In practice, one can choose a readily interpretable (possibly less predictive)
model. Another solution is to directly explain the original, highly predictive model. In this chapter, we
present a middle-ground approach where the original neural network architecture is modified parsimoniously
in order to reduce common biases observed in the explanations. Our approach leads to explanations that
better separate classes in feed-forward networks, and that also better identify relevant time steps in recurrent
neural networks.

I. INTRODUCTION

Neural networks are powerful learning machines that derive their power from the interconnection of a large
number of elementary computational units (neurons). A significant body of work has focused on finding
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appropriate neural network structures for specific problems [18, 13, 9]. For example, on image classification
tasks, convolution-type architectures have proven to be highly efficient [16, 36]. Similar models are also
being used increasingly in fields such as computational biology [1] or physics [29].

Motivated by these successes, there is a renewed interest in developing techniques to interpret how these
highly predictive neural network models reach their decisions. Some explanation techniques choose the
architecture in a way that it becomes interpretable, by defining the function as a simple sum over readily
interpretable quantities [25, 8, 40]. Other methods seek to explain a more general set of deep neural network
architectures [31, 38, 3, 27]. Three methods, sensitivity analysis [10, 4, 31], guided backprop [34] and deep
Taylor decomposition [21], all of them applicable to sequences of linear and ReLU layers, will be considered
in this paper.

The paper asks the question whether high prediction accuracy is a sufficient condition for high expla-
nation quality, and what additional steps are then necessary to also reach high explainability. The role of
regularization and the interplay between performance and robustness of global sensitivity maps has been
investigated, e.g. in Rasmussen et al [26]. Here we focus on interpretability of the individual decisions. More
precisely, we will test whether explanations exhibit a systematic bias, i.e. a constant divergence between the
features identified by the explanation technique and the actual features used by the model to predict, and how
the structure of the neural network can be adapted to reduce such bias. Section II introduces the explanation
techniques considered in this paper. In Sections III and IV, we present examples of highly predictive models
for which explanations are difficult to extract, and how simple and parsimonious structural modifications of
the neural network allow to maintain high predictive accuracy, while improving the explanations.

II. EXPLANATION TECHNIQUES

This section reviews a set of techniques for explaining the decisions made by neural networks. It focuses on
sequences of linear and ReLU layers. Highly predictive convolutional neural networks (CNNs) or recurrent
neural networks (RNNs) can be built from these sequences of layers. Let~x = (x1, . . . ,xd) be the d-dimensional
input presented to the neural network, and f (~x) the value of some output neuron. We focus on explanation
methods, that aim to score input relevance according to additive contributions to the function output. An
explanation is defined as a vector of scores (R1, . . . ,Rd) identifying the contribution of each input variable to
the function value f (~x).

i. Sensitivity Analysis

A common way of defining these scores is based on the locally evaluated gradient ∇~x f (~x). The gradient
can be efficiently computed with the backpropagation algorithm. Consider a deep network composed of
multiple layers, where each layer is composed of a linear transformation followed by an element-wise ReLU
nonlinearity. Letting j and k index neurons of two consecutive layers, activations (a j) j and (ak)k in the
respective layers can be related as ak = max(0,zk), where zk = ∑ j a jw jk + bk is called the pre-activation.

The backpropagation algorithm transmits partial derivatives from the top of the network to the input by
repeated application of the chain rule. Let δ j and δk be a shortcut notation for the locally evaluated partial
derivatives ∂ f /∂ z j and ∂ f /∂ zk. In this network, the chain-rule equation for propagating derivatives is

δ j = 1z j>0 ·∑k w jkδk (1)

in the hidden layers, and δi = ∑ j wi jδ j for the first layer. The gradients are propagated until the input
variables, where they can be converted to importance scores, e.g. by squaring (Ri = δ 2

i ). We refer to this way
of setting importance scores as sensitivity analysis (SA). Explanation through sensitivity analysis has been
used, e.g. by Gevrey et al [10], Baehrens et al [4], and Simonyan et al [31]. Sensitivity analysis as well as
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other methods relying on the gradient assume that the function value is not varying too quickly in the input
domain. This assumption usually does not hold for deep networks, where the function becomes steeper and
higher-frequency with every added layer, leading to an uninformative gradient [5].

To remediate to this problem, alternate propagation rules can be applied, for example the guided backprop
(GB) technique [34] applies the modified rule

δ̃ j = 1z j>0 ·max
(
0,∑k w jkδ̃k

)
(2)

which rectifies the incoming gradient and therefore prevents inhibitory effects to propagate. The propagated
signal is no longer a gradient, but still retains a rough interpretation as a local direction of variation. Like for
the gradient, the result of the propagation procedure can be converted to importance scores by squaring, i.e.
Ri = δ̃ 2

i .
In general, methods relying solely on the gradient or similar quantities are in essence closer to an

explanation of the function’s variation than of the function value itself: For example, sensitivity scores relate
to the function as: ∑i Ri = ∑i δ 2

i = ‖∇~x f (~x)‖2, i.e. the scores are a decomposition of the function’s local
slope [22]. Stated otherwise, these methods explain why the function varies strongly locally, however, they
do not explain why the function has high value locally.

ii. Deep Taylor Decomposition

To explain the function’s value we aim for an importance score that directly relates to f (~x). A number of
works have proposed to attribute importance scores subject to the conservation constraint ∑i Ri = f (~x), and
where these scores are computed using a specific graph propagation procedure [17, 3, 39, 21, 30]. Unlike
gradient-based methods, the quantity propagated at each neuron is no longer the partial derivatives δ j,δk or
some variant of it, but importance scores R j,Rk. In the following, we present the deep Taylor decomposition
(DTD) approach [21] to explaining f (~x), for which rules specific to deep networks with ReLU nonlinearities
were derived. The DTD propagation rule between two hidden layers is given by

R j = ∑
k

a jw+
jk

∑ j a jw+
jk

Rk, (3)

where w+
jk =max(0,w jk). The intuition for this rule is to redistribute the function value based on the excitation

incurred by neurons in the lower-layer onto neurons of the current layer. This rule also has an interpretation
as a Taylor decomposition of relevance Rk in the space of positive activations (a j) j ∈R+. Another DTD rule
specific to the input layer receiving as input pixel intensities xi ∈ [li,hi] is given by

Ri = ∑
j

xiwi j− liw+
i j −hiw−i j

∑i xiwi j− liw+
i j −hiw−i j

R j, (4)

with w+
i j = max(0,wi j) and w−i j = min(0,wi j). A strict application of the DTD method imposes as additional

requirements the absence of positive bias parameters and the ability to represent the concept to explain as a
top-layer ReLU neuron. More details and theoretical justification for the DTD propagation rules are given in
the original paper [21].

iii. Theoretical Limitations

The methods presented above, namely sensitivity analysis, guided backprop, and deep Taylor decomposition,
are in principle applicable to a broad range of architectures, including shallow or deep ones, fully or locally
connected, as well as recurrent architectures.
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However, despite this broad applicability, the quality of explanation can differ strongly depending on the
structure of the neural network. Unlike predictions made by the deep network, explanations are not what
the network is trained for and come as a by-product instead. The fact that the model is not optimized for
explanation error implies a possibly strong divergence from a ground truth explanation. We identify two
potential sources of divergence:

The first source of divergence is gradient noise, and affects SA: Although a function f (~x) may be close to
the ground truth f ?(~x) in terms of function value (i.e. ∀~x : ‖ f (~x)− f ?(~x)‖ ≤ ε), the gradient of the function,
on which sensitivity analysis is based, can still be made uncontrollably large [33, 32, 23, 5]. As a consequence,
the resulting explanations are no longer selective of the target concept to explain. A corollary of this gradient
noise in the context of RNN architecture is the exploding gradients problem [7, 24], where a finite variation in
the output space can be accompanied by a very large gradient in the space representing the older time steps.

The second source of divergence arises from attempts by explanation techniques such as GB or DTD to
reduce gradient noise: For example, the gradient rectification applied by GB makes the procedure more stable
than the actual gradient, however, the rectification operation can bias the explanation towards certain types of
features in a CNN or certain time steps in a RNN. DTD also strongly departs from the actual gradient by
redistributing only based on positive weights and activations in the hidden layers.

In the next two sections, we characterize these sources of divergence in the context of CNNs and RNNs,
and propose to modify the neural network architecture specifically for reducing them.

III. CONVOLUTIONAL NEURAL NETWORKS

Convolutional neural networks (CNNs) are a special category of neural networks that have come to attention
in the last years due to their great success in tasks such as image classification [16, 36]. The first layers
extract simple features at various locations and build some translation invariance, and the last layers map
these features to the final concepts (e.g. image categories). The explanation problem can here be defined as
finding which pixels are responsible for a certain classification decision produced at the output of the network.

While evidence for some classes originates from the same pixels (e.g. these classes share some of the
low-level features), other semantically less related classes correspond to distinct features in the image, and we
would like the explanation to better capture these features.

As an example, an image of trousers from the FashionMNIST dataset in Fig. 4 has the flared outline of a
dress but otherwise resembles trousers. We would expect a heatmap for trousers to focus more on the gap
between the legs and a heatmap for dress to focus more on the flared outline.

An explanation method must therefore be able to identify pixels that are truly relevant for a specific class
of interest, and that are not simply relevant in general.

Our hypothesis is that all classes share a common salient component of representation, and that discrimi-
nation between classes does not occur as the effect of building individual class-specific features but rather as
measuring small differences on this salient component. While this strategy is perfectly viable for the purpose
of prediction, any explanation technique that deviates too much from the function itself and that relies instead
on the graph structure might be biased with respect to this salient component.

In the following, we analyze the quality of explanations with respect to the structure of CNNs, specifically
the level of connectivity of the dense layers, which controls how fast the backpropagated signal mixes between
classes. Specifically, we want to build a structure that encourages the use of separate features for different
classes.

We consider three different levels of connectedness, depicted in Fig. 1:
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Figure 1: CNN with various levels of connectedness for the dense layers.

Structure 1: Unrestricted No restriction is applied to the dense layers of the neural network. That is, if f
is the function implemented by the neural network, we simply solve

min
w,b

Jemp( f )

that is the standard neural network objective, by minimizing the cost Jemp( f ) over the network weights w and
biases b. This is our baseline scenario.

Structure 2: Hard block-sparsity Here, we force the weight matrix of the dense layers to have block-
diagonal structure so that the classes only recoup near the convolutions layers. That is, we solve the constrained
optimization problem

min
w,b

Jemp( f ) : ∀l∀i, j : w(l)
i j = 0 if C(i) 6=C( j),

where w(l)
i j is the weight connecting the ith neuron in layer l− 1 to the jth neuron in layer l, ∀l spans the

last few dense layers, ∀i, j spans the input and output neurons of the current layer, and C(i) and C( j) are
the classes for which neuron i and j are reserved respectively. Practically, the constraint can be enforced at
each iteration by multiplying the weight matrix by a mask with block-diagonal structure, or can instead be
implemented by splitting the neural network near the output into several pathways, each of which predicts a
different class.

Structure 3: Soft block-sparsity In this last setting, the connectivity constraint is replaced by a L1-penalty
on all weights that are outside the block-diagonal structure. The optimization problem is rewritten as

min
w,b

Jemp( f )+λ∑l,i, j|w
(l)
i j | ·1C(i) 6=C( j), (5)

with the same definitions as in Structure 2 and additionally λ controlling the level of sparsity. For DTD,
because negative weights are not used in the backward propagation, we can further soften the regularization
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constraint to only penalize positive weights, i.e. we replace |w(l)
i j | by max(0,w(l)

i j ) in the equation above. We
call these two variants L1 and L1+.

Experiments

We trained several CNNs on the MNIST, FashionMNIST, and CIFAR10 datasets [19, 37, 15]. The neural
network used for CIFAR10 is shown in Fig. 1, and the neural networks used for the two other datasets have
similar structure. The networks were pre-trained without regularization until the loss no longer improved
for eight concurrent epochs, a heuristically chosen number. Due to the restriction of DTD, we constrained
biases in all layers to be zero or negative. The trained network is our baseline. This network is fine-tuned by
respectively applying L1 regularization, L1+ regularization or a block constraint and training until loss has
again no longer improved for eight epochs. We heuristically chose λ = 1.0 for the regularization rate. The
weight parameters of the last layer, to which the structuring penalty is applied, is visualized in Fig. 2.

Figure 2: Visualization of dense layer weights for baseline, L1, and L1+ regularized networks. Positive values are red,
negative values are blue.

Denoting by RA(~x) and RB(~x) the heatmaps for the true class and the class with the second highest output,
we measure the effectiveness of the architecture at separating classes by the expected cosine distance (ECD):

ECD = ED

[
1− 〈RA(~x),RB(~x)〉
||RA(~x)||2 · ||RB(~x)||2

]
, (6)

where ED is the expectation over the set of test data points for which the neural networks build evidence
for at least two classes. A high ECD reflects a strong ability of the neural network to produce class-specific
heatmaps, and accordingly suffer less from the explanation bias.1

In Fig. 3, the ECD for regularized and normal networks is shown. We see that structuring the network
with L1 regularization consistently helps with the disentanglement of class representations for GB and DTD.
It does not have a significant effect for SA. This is likely due to the fact that SA is based on local variations of
the prediction function and less dependent on the way the function structures itself in the neural network. The
effects were consistently present when we repeated the experiments multiple times with different network
configurations.

As shown in Table 1, the various structuration schemes do not impact the model accuracy with one
exception for the block constraint on CIFAR10. They can therefore be considered as viable methods to
decrease entanglement of explanations without trading in performance.

1Other quantitative ways of comparing the interpretability of different models, or different explanation techniques, are given in
[6, 28].
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Figure 3: Explanation separability as measured by the expected cosine distance (ECD), for different models, explanation
techniques, and datasets.

We can see in an example in Fig. 4 that the disentanglement of class representations is reflected in sensible
differences between heatmaps. The structured model focuses more on the gap between the legs for trousers
compared to the heatmap for dress. The heatmap for dress is spread more uniformly over the entire piece
of clothing and focuses on the outline, which resembles a dress with a flared bottom. It is visible that the
disentanglement of classes also improves the explanations for the correct class, as they now focus more on
the relevant feature.

Table 1: CNN model accuracy

Structure MNIST FashionMNIST CIFAR10
Unrestricted 99.16% 91.98% 83.02%
Block 99.29% 91.84% 71.75%
L1 99.20% 92.21% 84.20%
L1+ 99.25% 92.55% 84.07%

IV. RECURRENT NEURAL NETWORKS

Recurrent neural networks (RNNs) are a class of machine learning models that can extract patterns of variable
length from sequential data. A longstanding problem with RNN architectures has been the modeling of
long-term dependencies. The problem is linked with the difficulty of propagating gradient over many time
steps. Architectures, such as LSTM [12], or hierarchical RNNs [11], as well as improved optimization
techniques [35] have been shown to address these difficulties remarkably well so that these techniques can
now be applied to complex tasks such as speech recognition or machine translation. Some work has recently
focused on explaining recurrent architectures in the context of text analysis [2].

In a similar way as for Section III, we will hypothesize that the recurrent structure forms a large salient
component of representation and that the classes are predicted based on small variations of that component
rather on class-specific features. Thus, explanation techniques that deviate from the prediction function itself
might be biased towards that salient component.

To verify this, we consider various RNN architectures with different depths and connectivity. Each of
these architectures can be expressed in terms of cells receiving the previous state and the current data, and
producing the next state and the prediction. We use ReLU activations for every layer and softmax activation
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Figure 4: Heatmaps on FashionMNIST produced by different explanation techniques applied to the basic unrestricted
model (top) and the L1/L1+ model with soft block-sparsity (bottom). For the first model, there is nearly no
differences between classes. For the second model, the explanations with GB and DTD identify the leg gap as
relevant for trouser and flared outline for dress.

to output the last cell to class probabilities. We consider the following five cell structures (two of them are
shown in Fig. 5):

Structure 1: Shallow Cell The shallow cell performs a linear combination of the current state and current
data, and computes the next state from it. This is our baseline scenario.

For applicability of deep Taylor decomposition to this architecture, we need an additional propagation
rule to redistribute on two different modalities at the same time (hidden state and pixels). Denoting i and j the
pixels and ReLU activations respectively forming the two cell modalities and k the hidden layer neuron, the
propagation rule is redefined as Ri = ∑k(xiwik− liw+

ik −hiw−ik) · (Rk/zk) and R j = ∑k r jw+
jk(Rk/zk), where

zk = ∑ j r jw+
jk +∑i xiwik− liw+

ik −hiw−ik is the normalization term.
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Figure 5: Examples of RNN Cell Architectures.

Structure 2: Deep Cell The deep cell nonlinearly combines the current state and the current data. This
allows to build a data representation that can more meaningfully combine with the hidden state representation.
It also makes explanation easier as the two modalities being merged are ReLU activations, and therefore, do
not need a special propagation rule for DTD.

Structure 3: Convolutional-Deep Cell The convolutional-deep (ConvDeep) cell is an extension of the
Deep cell in which a sequence of 2 convolution and pooling layers is applied to the input instead of a
fully-connected layer. More precisely, we use 24 convolutional filters of size 5×5, followed by sum pooling
with 2×2 receptive fields. The second convolutional layer has 32 filters of size 3×3, and the setting of the
following pooling is the same. We use stride 1 for the two convolution layers, and stride 2 for the pooling
layers. This allows to produce well-disentangled features that integrate better with the recurrent states.

Structure 4: R-LSTM Cell This cell is another variant of the Deep cell. It employs one fully-connected
layer with 256 neurons connecting to 75 R-LSTM cells. The R-LSTM cell is a modified version of LSTM
whose tanh activations are replaced by ReLU in order to satisfy the constraint of GB and DTD. We treat gate
activations in the cell as constants when applying DTD as suggested by Arras et al [2], and set their gradients
to zero for GB.

Structure 5: ConvR-LSTM Cell The last cell is an extension of R-LSTM where the first fully-connected
layer is replaced by the convolution and pooling layers used in Structure 3.

Experiments

We construct an artificial problem consisting of three images concatenated horizontally (two of a given class,
and one of another class), and where the goal is to predict the dominating class. We consider MNIST [19] or
FashionMNIST [37] examples for this experiment. This leads to classification tasks where the input~x is a
mosaic of size 28×84, and where the output is a set of 10 possible classes. With this construction, we can
easily estimate explainability by measuring which percentage of the explanation falls onto the correct tiles of
the mosaic.
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The problem above is mapped to the RNN architecture by horizontally splitting~x into non-overlapping
segments {~xt ∈ R28×7}12

t=1 and sequentially presenting these segments to the RNN. Fig. 6 illustrates the
setting.

RNN Cell RNN CellRNN Cell RNN Cell

Figure 6: RNN architecture scanning through a sequence of three digits and predicting the dominating class, here “8”.

Table 2: Number of parameters of each RNN structure, and model accuracy

Accuracy
Cell Architecture # Parameters MNIST FashionMNIST
Shallow 184330 98.12% 90.00%
Deep 153578 98.16% 89.81%
ConvDeep 151802 99.22% 92.87%
R-LSTM 150570 98.50% 91.35%
ConvR-LSTM 152125 99.26% 93.33%

The number of neurons for each layer in each architecture is chosen such that these architectures have
a similar number of training parameters. Table 2 summarizes the numbers. All models are trained using
the backpropagation through time procedure and using the Adam optimizer [14]. We initialize weights with
2σ -truncated normal distribution with µ = 0 and σ = 1/

√
|~a| where |~a| is the number of neurons from the

previous layer as suggested in [20]. Biases are initialized to zero and constrained to be zero or negative during
training. We train for 100 epochs using batch size 50. We apply dropout to every fully-connected layers,
except neurons in input and output layers. Dropout probability is set to 0.2.

The learning rate is adjusted for each architecture to achieve good predictive performance. To use an
architecture for experiments, we require that accuracy reaches approximately 98% and 90% on MNIST and
FashionMNIST respectively. Lastly, we add one additional input with constant value zero to the softmax
layer. This last modification forces the model to build positive evidence for predicting classes rather than
relying on building counter-evidence for other classes.

Fig. 7 shows relevance heatmaps produced by various methods on the Shallow, Deep, ConvDeep, R-
LSTM and ConvR-LSTM architectures. We observe that incorporating structure into the cell leads to a better
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Figure 7: Heatmaps obtained with each RNN structure, for different explanation techniques and datasets.

allocation onto the relevant elements of the sequence. This is particularly noticeable for DTD, where heatmaps
of the base model (Shallow) are strongly biased towards a salient component constituted of the rightmost
pixels, whereas heatmaps for the structured models, especially LSTMs, are more balanced. ConvR-LSTM
further improves R-LSTM’s heatmaps by providing more resolution at the pixel level. Nevertheless, the
presence of features from irrelevant input, such as “1” in Digit 0 example, suggests that cell design can be
further improved for the purpose of explanation, beyond the modifications we have proposed here.

In the following, we provide quantitative measures of heatmap quality.2 By construction, we know that

2see also [6, 28]
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Figure 8: Explanation quality as measured by the expected cosine similarity (ECS), for different models, explanation
techniques, and datasets.

relevance should be assigned to the two dominating items in the sequence (i.e. those that jointly determine
the class). The degree to which heatmaps satisfy this property can be quantified by computing the cosine
similarity between a binary vector I(~x) ∈ {(1,1,0), (1,0,1), (0,1,1)}, indicating what are the two items of
the sequence~x having the same class, and a vector of the same dimensions R(~x) ∈R3 containing relevance
scores pooled on each item of the sequence. Our metric for quantifying explanation power is the expected
cosine similarity:

ECS = ED

[
〈I(~x),R(~x)〉

‖I(~x)‖2 · ‖R(~x)‖2

]
, (7)

where ED[·] computes an average over all sequences in the test set. The higher the ECS the better. Fig.
8 shows our ECS metric for various models and explanation techniques. Generally, we can see that more
structured cells have higher ECS than the Shallow architecture. In particular, R-LSTM and ConvR-LSTM
show significant improvements across all methods. Moreover, the large difference of the cosine similarity
between Shallow and Deep architectures also corroborates the strong impact of cell structure on the DTD
heatmaps as it was observed in Fig. 7.

V. CONCLUSION

The success of neural networks at learning functions that accurately predict complex data has fostered the
development of techniques that explain how the network decides. While the training objective closely relates
to the prediction task, the explanation of these predictions comes as a by-product and little guarantee is
offered on their correctness.

In this paper, we have shown that different neural network structures, while offering similar prediction
accuracy, can strongly influence the quality of explanations. Both for the baseline CNNs and RNNs, the
explanations are biased towards a salient component. This salient component corresponds to general image
features for the CNNs or the last time steps for the RNNs.

While the neural network is still able to solve the task based on capturing small variations of that salient
component, the explanation technique, which departs from the function to predict, is much more sensitive
to it. Therefore, when explanation of the prediction is needed, it is important to pay further attention to the
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neural network architecture, in particular, by making sure that each class or concept to explain, builds its own
features, and that these features are well-disentangled.
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